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ABSTRACT 

 Modified decoding algorithms for DS codes are proposed that, in addition to error correction, provide error 
detection when the number of correctable bit errors is exceeded by one. This combined error detection and 
correction capability of modified decoder are provide to prevent soft errors from causing data corruption, memories 
are typically protected with ECCs. Memory applications require low latency encoders and decoders. These codes 
allow us to design a fault tolerant error-detector unit that detects any error in the received code vector despite having 
faults in the detector circuitry. The fault secure detector unit to check the output vector of the encoder and corrector 
circuitry, and if there is any error in the output of either of these units that unit has to redo the operation to generate 
the correct output vector. Using this detect and repeat technique, correct potential transient errors in the encoder or 
corrector output and provide fault tolerant memory system with fault tolerant supporting circuitry. The need for fault 
tolerant systems in terrestrial applications is of growing importance. Unpredictability in the system design, 
manufacture and operation is of critical importance to the population that these systems affect. Majority logic 
decodable codes are suited for memory applications due to their capability to correct a large number of errors. 
However they require a large decoding time that impact memory performance. The fault-detection method 
significantly reduces memory access time when there is no error in the data read. The technique uses the majority 
logic decoder itself to detect failures, which makes the area over head minimal and keeps the extra power 
consumption low. 
 
Index Terms—Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC), 
majority logic decoder (MLD), memory, difference-set cyclic codes (DSCCs). 
 
 
1. INTRODUCTION 
 Now a days soft errors are makes a major 
problems in memory applications due to scaling and 
higher integration densities. These errors not only in 
extreme radiation environments like space craft and 
avionics but also at normal terrestrial environments. 
Especially, SRAM memory failure rates are increasing 
significantly, therefore posing a major reliability 
concern for many applications. Some commonly used 
mitigation techniques are: 
• triple modular redundancy (TMR); 
• error correction codes (ECCs). 
TMR is a special case of the von Neumann method [3] 
consisting of three versions of the design in parallel, 
with a majority voter selecting the correct output. As 
the method suggests, the complexity overhead would 
be three times plus the complexity of the majority 

voter and thus increasing the power consumption. For 
memories, it turned out that ECC codes are the best 
way to mitigate memory soft errors [2]. For terrestrial 
radiation environments where there is a low soft error 
rate (SER), codes like single error correction and 
double error detection (SEC–DED), are a good 
solution, due to their low encoding and decoding 
complexity. However, as a consequence of 
augmenting integration densities, there is an increase 
Hocquenghem (BCH) are not suitable for this task. 
The reason for this is that they use more sophisticated 
decoding algorithms, like complex algebraic (e.g., 
floating point operations or logarithms) decoders that 
can decode in fixed time, and simple graph decoders, 
that use iterative algorithms (e.g., belief 
propagation).Both are very complex and increase 
computational costs [6]. 
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Among the ECC codes that meet the requirements of 
higher error correction capability and low decoding 
complexity, cyclic block codes have been identified as 
good candidates, due to their property of being 
majority logic (ML) decodable [7], [8]. A subgroup of 
the low-density parity check (LDPC) codes, which 
belongs to the family of the ML decodable codes, has 
been researched in [9]–[11]. In this paper, we will 
focus on one specific type of LDPC codes, namely the 
difference-set cyclic codes (DSCCs), which his widely 
used in the Japanese tele text system or FM multiplex 
broadcasting systems [12]–[14].The main reason for 
using ML decoding is that it is very simple to 
implement and thus it is very practical and has low 
complexity. The drawback of ML decoding is that, for 
a coded word of -bits, it takes cycles in the decoding 
process, posing a big impact on system performance 
[6].One way of coping with this problem is to 
implement parallel encoders and decoders. This 
solution would enormously increase the complexity 
and, therefore, the power consumption. 
As most of the memory reading accesses will have no 
errors, the decoder is most of the time working for no 
reason. This has motivated the use of a fault detector 
module [11] that checks if the codeword contains an 
error and then triggers the correction mechanism 
accordingly. In this case, only the faulty code words 
need correction, and therefore the average read 
memory access is speeded up, at the expense of an 
increase in hardware cost and power consumption. A 
similar proposal has been presented in [15] for the 
case of flash memories. The simplest way to 
implement a fault detector for an ECC is by 
calculating the syndrome, but this generally implies 
adding another very complex functional unit. 
This paper explores the idea of using the ML decoder 
circuitry as a fault detector so that read operations are 
accelerated with almost no additional hardware cost. 
The results show that the properties of DSCC-LDPC 
enable efficient fault detection. The remainder of this 
paper is organized as follows. Section II gives an 
overview of existing ML decoding solutions; Section 
III presents the novel ML detector/decoder 
WORD 
 
WORD            ENCODER 
 
                                                   MEM ORY           
MLD     WORD 
 
 
 
 
Fig. 1.Memory system schematic with MLD. 
 

(MLDD) using difference-set cyclic codes; Section IV 
discusses the results obtained for the different versions 
in respect to effectiveness, performance, and area and 
power consumption. Finally, Section V discusses 
conclusions and gives an outlook onto future work. 
 
2.EXISTENT MAJORITY LOGIC 
DECODING (MLD) SOLUTIONS 
 MLD is based on a number of parity check 
equations which are orthogonal to each other, so that, 
at each iteration, each code word bit only participates 
in one parity check equation, except the very first bit 
which contributes to all equations. For this reason, the 
majority result of these parity check equations decide 
the correctness of the current bit under decoding. 
MLD was first mentioned in [7] for the Reed–Müller 
codes. Then, it was extended and generalized in [8] for 
all types of systematic linear block codes that can be 
totally orthogonalized on each code word bit .A 
generic schematic of a memory system is depicted in 
Fig. 1 for the usage of an ML decoder. Initially, the 
data words are encoded and then stored in the 
memory. When the memory is read, the codeword is 
then fed through the ML decoder before sent to the 
output for further processing. In this decoding process, 
the data word is corrected from all bit-flips that it 
might have suffered while being stored in the memory. 
There are two ways for implementing this type of 
decoder. The first one is called the Type-IML decoder, 
which determines, upon XOR combinations of the 
syndrome, which bits need to be corrected [6]. The 
second one is the Type-II ML decoder that calculates 
directly out of the codeword bits the information of 
correctness of the current bit under decoding [6]. Both 
are quite similar but when it comes to implementation, 
the Type-II uses less area, as it does not calculate the 
syndrome as an intermediate step. Therefore, this 
paper focuses only on this one. 
 
 
 
A. Plain ML Decoder 
 
As described before, the ML decoder is a simple and 
powerful decoder, capable of correcting multiple 
random bit-flips depending on the number of parity 
check equations. It consists of four parts: 1) a cyclic 
shift register; 2) an XOR matrix; 3) a majority gate; 
and 4) an XOR for correcting the codeword bit under 
decoding results of the checksum equations from the 
XOR matrix. In the cycle, the result has reached the 
final tap, producing the output signal (which is the 
decoded version of input).As stated before, input 
might correspond to wrong data corrupted by a soft 
error. To handle this situation, the decoder would 
behave as follows. After the initial step, in which the 

7 

7 
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code word is loaded, as illustrated in Fig. 2.The input 
signal is initially stored into the cyclic shift register 
rand shifted through all the taps. The intermediate 
values in each tap are then used to calculate the into 
the cyclic shift register, the decoding starts by 
calculating the parity check equations hardwired in the 
XOR matrix. The resulting sums are then forwarded to 
the majority gate for evaluating its correctness. If the 
number of 1’s received in is greater than the number of 
0’s,that would mean that the current bit under 
decoding is wrong, and a signal to correct it would be 
triggered. Otherwise, the bit under decoding would be 
correct and no extra operations would be needed on it. 
In the next step, the content of the registers are rotated 
and the above procedure is repeated until all codeword 
bits have been processed. Finally, the parity check 
sums should be zero if the code word has been 
correctly decoded. Further details on how this 
algorithm works can be found in [6]. The whole 
algorithm is depicted in Fig. 3. The previous algorithm 
needs as many cycles as the number of bits in the input 
signal, which is also the number of taps, in the 
decoder. This is a big impact on the performance of 
the system, depending on the size of the code. For 
example, for a code word of 73 bits, the decoding 
would take 73 cycles, which would be excessive for 
most applications. 
 
B. Plain MLD With Syndrome Fault Detector (SFD) 
 In order to improve the decoder performance, 
alternative designs may be used. One possibility is to 
add a fault detector by calculating the syndrome, so 
that only faulty code words are decoded [11]. Since 
most of the code words will be error-free, no further 
correction will be needed, and therefore performance 
will not be affected. Although the implementation of 
an SFD reduces the average latency of the decoding 
process, it also adds complexity to the design (see Fig. 
4).The SFD is an XOR matrix that calculates the 
syndrome based on the parity check matrix. Each 
parity bit results in a syndrome equation. Therefore, 
the complexity of the syndrome calculator increases 
with the size of the code. A faulty code word is 
detected when at least one of the syndrome bits is “1.” 
This triggers the MLD to start the decoding, as 
explained before. On the other hand, if the codeword 
is error-free, it is forwarded directly to the output, thus 
saving the correction cycles In this way, the 
performance is improved in exchange of an additional 
module in the memory system: a matrix of XOR gates 
to resolve the parity check matrix, where each check 
bit results into a syndrome equation. This finally 
results in a quite complex module, with a large amount 
of additional hardware and power consumption in the 
system. 
3.PROPOSED ML DETECTOR/DECODER 

 This section presents a modified version of 
the ML decoder that improves the designs presented 
before. Starting from the original design of the ML 
decoder introduced in [8], the proposed ML 
detector/decoder (MLDD) has been implemented 
using the difference-set cyclic codes (DSCCs) [16]–
[19]. This code is part of the LDPC codes, and, based 
on their attributes, they have the following properties  
ability to correct large number of errors 
 

 
 

Fig. 2.Schematic of an ML decoder.I) cyclic shift 
register. II) XOR matrix. III) Majority gate. IV) 

XOR for correction. 
 

 
Fig. 3.Flowchart of the ML algorithm. 
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• sparse encoding, decoding and checking circuits 
synthesizable into simple hardware; 
• modular encoder and decoder blocks that allow an 
efficient hardware implementation; 
• systematic code structure for clean partition of 
information and code bits in the memory. 
 

 
 

Fig. 4.Single check equation of a � _ __ ML 
decoder. (a) One bit-flip. (b) Two bit-flips. (c) 

Three bit-flips. 
 
An important thing about the DSCC is that its 
systematical distribution allows the ML decoder to 
perform error detection in 
a simple way, using parity check sums (see [6] for 
more details).However, when multiple errors 
accumulate in a single word, this mechanism may 
misbehave, as explained in the following. In the 
simplest error situation, when there is a bit-flip in a 
code word, the corresponding parity check sum will be 
“1,” as shown in Fig. 5(a). This figure shows a bit-flip 
affecting bit 42 of a codeword with length and the 
related check sum that produces a “1.” However, in 
the case of Fig. 5(b), the code word is affected by two 
bit-flips in bit 42 and bit 25, which participate in the 
same parity check equation. So, the check sum is zero 
as the parity does not change. Finally, in Fig. 5(c), 
there are three bit-flips which again are detected by the 
check sum (with a “1”).As a conclusion of these 
examples, any number of odd bit flip scan be directly 
detected, producing a “1” in the corresponding .The 
problem is in those cases with an even numbers of bit-
flips, where the parity check equation would not detect 
the error. In this situation, the use of a simple error 
detector based on parity check sums does not seem 
feasible, since it cannot handle “false negatives” 
(wrong data that is not detected). However, the 

alternative would be to derive all data to the decoding 
process(i.e., to decode every single word that is read in 
order to check its correctness), as explained in 
previous sections, with a large performance overhead 
.Since performance is important for most applications, 
we have chosen an intermediate solution, which 
provides a good reliability with a small delay penalty 
for scenarios where up to five bit-flips may be 
expected (the impact of situations with more than five 
bit-flips will be analyzed in Section IV-A). This 
proposal is one of the main contributions of this paper, 
and it is based on the following hypothesis: Given a 
word read from a memory protected with DSCC 
codes, and affected by up to five bit-flips, all errors 
can be detected in only three decoding cycles. This is a 
huge improvement over the simpler case, where 
decoding cycles are needed to guarantee that errors are 
detected. The proof of this hypothesis is very complex 
from the mathematical point of view. Therefore, two 
alternatives have been used in order to prove it, which 
are given here. 
• Through simulation, in which exhaustive 
experiments have been conducted, to effectively verify 
that the hypothesis applies (see Section IV). 
• Through a simplified mathematical proof for the 
particular case of two bit-flips affecting a single word  
For simplicity, and since it is convenient to first 
describe the chosen design, let us assume that the 
hypothesis is true and that only three cycles are needed 
to detect all errors affecting up to five bits (this will be 
confirmed in Section IV).In general, the decoding 
algorithm is still the same as the one in the plain ML 
decoder version. The difference is that, instead of 
decoding all codeword bits by processing the ML 
decoding during cycles, the proposed method stops 
intermediately in the third cycle, as illustrated in Fig. 
6. If in the first three cycles of the decoding process, 
the evaluation of the XOR matrix for all is “0,” the 
code word is determined to be error-free and 
forwarded directly to the output. If the contain in any 
of the three cycles at least a “1,” the proposed method 
would continue the whole decoding process in order to 
eliminate the errors. A detailed schematic of the 
proposed design is shown in Fig. 7. The figure shows 
the basic ML decoder with an -tap shift register, an 
XOR array to calculate the orthogonal parity check 
sums and a majority gate for deciding if the current bit 
under decoding needs to be inverted. Those 
components are the same as the ones for the plain ML 
decoder shown in Fig. 2. The additional hardware to 
perform the error detection is illustrated in Fig. 7 as i) 
the control unit which triggers a finish flag when no 
errors are detected after the third cycle and ii) the 
output. 
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Fig. 5.Flow diagram of the MLDD algorithm. 
 
 Tristate buffers. The output tri state buffers 
are always in high impedance unless the control unit 
sends the finish signal so that the current values of the 
shift register are forwarded to the output. The control 
schematic is illustrated in Fig. 8. The control unit 
manages the detection process. It uses a counter that 
counts up to three, which distinguishes the first three 
iterations of the ML decoding. In these first three 
iterations, the control unit evaluates the by combining 
them with the OR1 function. This value is fed into a 
three-stage shift register, which holds the results of the 
last three cycles. In the third cycle, the OR2 gate 
evaluates the content of the detection register. When 
the result is “0,” the FSM sends out the finish signal 
indicating that the processed word is error free. In the 
other case, if the result is “1,” the ML decoding 
process runs until the end. 
This clearly provides a performance improvement 
respect to the traditional method. Most of the words 
would only take three cycles (five, if we consider the 
other two for input/output) and only those with errors 
(which should be a minority) would need to perform 
the whole decoding process. More information about 
performance details will be provided in the next 
sections. The schematic for this memory system is 
very similar to the one in Fig. 1, adding the control 
logic in the MLDD module. 
 

 
 
Fig. 6.Schematic of the proposed MLDD.i) Control 

unit. ii) Output tristate buffers. 
 
  
 WORD         ENCODER 
 
                                                   MEMORY          
MLDD     WORD 
 
 

Fig. 8.Memory system schematic of an MLDD. 
 
4.CORRECTOR 
 One-step majority logic correction is the 
procedure that identifies the correct value of an each 
bit in the codeword directly from the received 
codeword the majority value indicates the correctness 
of the code-bit under consideration; if the majority 
value is 1, the   bit is inverted, otherwise it is kept 
unchanged. 
 
  

7 
 

7 
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Fig 8 Majority Logic Corrector for 15-Bit Codeword’s 
A compact implementation for the majority gate is by 
using Sorting Networks. The binary Sorting Networks 
is used to do the sort operation of the second step 
efficiently. An -input sorting network is the structure 
that sorts a set of bits, using 2-bit sorter building 
blocks. Fig. 6.5 (a) Shows a 4-input sorting network. 
Each of the vertical lines represents one comparator 
which compares two bits and assigns the larger one to 
the top output and the smaller one to the bottom see 
Fig. 6.5 (b) the four-input sorting network, has five 
comparator blocks, where each block consists of two 
two-input gates; overall the four-input sorting network 
consists of ten two-input gates in total. 
 
5.SORTING NETWORK  
 Sorting network is used to sort the two or 
more inputs. By using the sorting network accessing 
time is reduced by sorting the inputs. From the below 
diagram each vertical line indicates a comparator, 
which compares the two bits and assigns the larger one 
to the top output and smaller one to the bottom. From 
that we conclude that without using the sorting 
network the XOR matrix output is directly applied to 
the majority gate so the accessing time is large to 
obtain the output. In our proposed we use sorting 

network in the modified control unit it separate the 
maximum level output and minimum level output So 
the accessing time is reduced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10 (a) Four-Input Sorting Network Each (b) One 
Comparator Structure 
(c) Eight-Input Majority Gate Using Sorting Network 
 
6.RESULTS 
 

A. Memory 
 
 
 The memory read access delay of the plain 
MLD is directly dependent on the code size. i.e., a 
code with length 72 needs 72 cycles. Then two extra 
cycles need to be added for I/O. On the other hand, the 
memory read access delay of the proposed Modified 
MLDD is only dependent on the word error 
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rate(WER).there are more errors, then more words 
need to be fully decoded. 
 

 
 

Fig 10 Error Detection by Plain MLD Method 
 

B. Area 
 In the proposed MLDD there is an extra 
circuitry of control logic which consists of shift 
register and or gates. The given below table shows the 
comparison of total estimated power consumption. 
 
 

Technique 
 

Total Equivalent gate 
count requirement 

Existent MLD                    3197 
MLDD                    3322 
Modified MLDD                     2229 
 
 
 Therefore there will be a slight area overhead 
when compared to existing MLD because of this 
detection logic. But this is overcome by modified 
MLDD using sorting network. 
 
7.CONCLUSION  
 In this paper, the detection of errors during 
first iterations of serial one step Majority Logic 
Decoding of DSCCs-LDPC codes has been presented. 
The simulation results show that the one step MLD 
would takes 15 cycles to decode a code word of 15-
bits, which would be excessive for most applications. 
The MLD design requires small area but requires large 
decoding time and can be able to detect two or few 
errors.Hence,memory access time increases another 
method, called MLDD can detect upto five bit-flips 
and consumes the area of majority gate. 
 
The proposed modified MLDD have the capability to 
detect the presence of errors in just 3 cycles even for 
multiple bit flips.It has found that for error detection 
and correction (for code word of 15), when comparing 
to the existing technique, a speed up of about 1100 ns 

is obtained when there is no errors in the data read 
access. This is a great saving of time since most of the 
situations the memory read access does not make 
errors. Therefore there is a considerable reduction in 
the memory access time.The proposed MLDD have 
the capability of detecting more than five bit flips and 
also reduces the area of majority gate by the use of 
sorting network. 
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