
Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

Indian Journal of Electronics and Electrical Engineering (IJEEE)
Vol.2.No.1 2014pp 7-14.

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

goniv Publications Page 7

FAULT SECURE MEMORY DESIGN USING DIFFERENCE-SET CODES
FOR MEMORY APPLICATIONS

Lakshmanan.V Vijaya Ganesh.J
NPR College of Engineering and Technology

Dindigul.India

ABSTRACT

 Modified decoding algorithms for DS codes are proposed that, in addition to error correction, provide error
detection when the number of correctable bit errors is exceeded by one. This combined error detection and
correction capability of modified decoder are provide to prevent soft errors from causing data corruption, memories
are typically protected with ECCs. Memory applications require low latency encoders and decoders. These codes
allow us to design a fault tolerant error-detector unit that detects any error in the received code vector despite having
faults in the detector circuitry. The fault secure detector unit to check the output vector of the encoder and corrector
circuitry, and if there is any error in the output of either of these units that unit has to redo the operation to generate
the correct output vector. Using this detect and repeat technique, correct potential transient errors in the encoder or
corrector output and provide fault tolerant memory system with fault tolerant supporting circuitry. The need for fault
tolerant systems in terrestrial applications is of growing importance. Unpredictability in the system design,
manufacture and operation is of critical importance to the population that these systems affect. Majority logic
decodable codes are suited for memory applications due to their capability to correct a large number of errors.
However they require a large decoding time that impact memory performance. The fault-detection method
significantly reduces memory access time when there is no error in the data read. The technique uses the majority
logic decoder itself to detect failures, which makes the area over head minimal and keeps the extra power
consumption low.

Index Terms—Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC),
majority logic decoder (MLD), memory, difference-set cyclic codes (DSCCs).

1. INTRODUCTION
 Now a days soft errors are makes a major
problems in memory applications due to scaling and
higher integration densities. These errors not only in
extreme radiation environments like space craft and
avionics but also at normal terrestrial environments.
Especially, SRAM memory failure rates are increasing
significantly, therefore posing a major reliability
concern for many applications. Some commonly used
mitigation techniques are:
• triple modular redundancy (TMR);
• error correction codes (ECCs).
TMR is a special case of the von Neumann method [3]
consisting of three versions of the design in parallel,
with a majority voter selecting the correct output. As
the method suggests, the complexity overhead would
be three times plus the complexity of the majority

voter and thus increasing the power consumption. For
memories, it turned out that ECC codes are the best
way to mitigate memory soft errors [2]. For terrestrial
radiation environments where there is a low soft error
rate (SER), codes like single error correction and
double error detection (SEC–DED), are a good
solution, due to their low encoding and decoding
complexity. However, as a consequence of
augmenting integration densities, there is an increase
Hocquenghem (BCH) are not suitable for this task.
The reason for this is that they use more sophisticated
decoding algorithms, like complex algebraic (e.g.,
floating point operations or logarithms) decoders that
can decode in fixed time, and simple graph decoders,
that use iterative algorithms (e.g., belief
propagation).Both are very complex and increase
computational costs [6].

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 8

Among the ECC codes that meet the requirements of
higher error correction capability and low decoding
complexity, cyclic block codes have been identified as
good candidates, due to their property of being
majority logic (ML) decodable [7], [8]. A subgroup of
the low-density parity check (LDPC) codes, which
belongs to the family of the ML decodable codes, has
been researched in [9]–[11]. In this paper, we will
focus on one specific type of LDPC codes, namely the
difference-set cyclic codes (DSCCs), which his widely
used in the Japanese tele text system or FM multiplex
broadcasting systems [12]–[14].The main reason for
using ML decoding is that it is very simple to
implement and thus it is very practical and has low
complexity. The drawback of ML decoding is that, for
a coded word of -bits, it takes cycles in the decoding
process, posing a big impact on system performance
[6].One way of coping with this problem is to
implement parallel encoders and decoders. This
solution would enormously increase the complexity
and, therefore, the power consumption.
As most of the memory reading accesses will have no
errors, the decoder is most of the time working for no
reason. This has motivated the use of a fault detector
module [11] that checks if the codeword contains an
error and then triggers the correction mechanism
accordingly. In this case, only the faulty code words
need correction, and therefore the average read
memory access is speeded up, at the expense of an
increase in hardware cost and power consumption. A
similar proposal has been presented in [15] for the
case of flash memories. The simplest way to
implement a fault detector for an ECC is by
calculating the syndrome, but this generally implies
adding another very complex functional unit.
This paper explores the idea of using the ML decoder
circuitry as a fault detector so that read operations are
accelerated with almost no additional hardware cost.
The results show that the properties of DSCC-LDPC
enable efficient fault detection. The remainder of this
paper is organized as follows. Section II gives an
overview of existing ML decoding solutions; Section
III presents the novel ML detector/decoder
WORD

WORD ENCODER

 MEM ORY
MLD WORD

Fig. 1.Memory system schematic with MLD.

(MLDD) using difference-set cyclic codes; Section IV
discusses the results obtained for the different versions
in respect to effectiveness, performance, and area and
power consumption. Finally, Section V discusses
conclusions and gives an outlook onto future work.

2.EXISTENT MAJORITY LOGIC
DECODING (MLD) SOLUTIONS
 MLD is based on a number of parity check
equations which are orthogonal to each other, so that,
at each iteration, each code word bit only participates
in one parity check equation, except the very first bit
which contributes to all equations. For this reason, the
majority result of these parity check equations decide
the correctness of the current bit under decoding.
MLD was first mentioned in [7] for the Reed–Müller
codes. Then, it was extended and generalized in [8] for
all types of systematic linear block codes that can be
totally orthogonalized on each code word bit .A
generic schematic of a memory system is depicted in
Fig. 1 for the usage of an ML decoder. Initially, the
data words are encoded and then stored in the
memory. When the memory is read, the codeword is
then fed through the ML decoder before sent to the
output for further processing. In this decoding process,
the data word is corrected from all bit-flips that it
might have suffered while being stored in the memory.
There are two ways for implementing this type of
decoder. The first one is called the Type-IML decoder,
which determines, upon XOR combinations of the
syndrome, which bits need to be corrected [6]. The
second one is the Type-II ML decoder that calculates
directly out of the codeword bits the information of
correctness of the current bit under decoding [6]. Both
are quite similar but when it comes to implementation,
the Type-II uses less area, as it does not calculate the
syndrome as an intermediate step. Therefore, this
paper focuses only on this one.

A. Plain ML Decoder

As described before, the ML decoder is a simple and
powerful decoder, capable of correcting multiple
random bit-flips depending on the number of parity
check equations. It consists of four parts: 1) a cyclic
shift register; 2) an XOR matrix; 3) a majority gate;
and 4) an XOR for correcting the codeword bit under
decoding results of the checksum equations from the
XOR matrix. In the cycle, the result has reached the
final tap, producing the output signal (which is the
decoded version of input).As stated before, input
might correspond to wrong data corrupted by a soft
error. To handle this situation, the decoder would
behave as follows. After the initial step, in which the

7

7

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 9

code word is loaded, as illustrated in Fig. 2.The input
signal is initially stored into the cyclic shift register
rand shifted through all the taps. The intermediate
values in each tap are then used to calculate the into
the cyclic shift register, the decoding starts by
calculating the parity check equations hardwired in the
XOR matrix. The resulting sums are then forwarded to
the majority gate for evaluating its correctness. If the
number of 1’s received in is greater than the number of
0’s,that would mean that the current bit under
decoding is wrong, and a signal to correct it would be
triggered. Otherwise, the bit under decoding would be
correct and no extra operations would be needed on it.
In the next step, the content of the registers are rotated
and the above procedure is repeated until all codeword
bits have been processed. Finally, the parity check
sums should be zero if the code word has been
correctly decoded. Further details on how this
algorithm works can be found in [6]. The whole
algorithm is depicted in Fig. 3. The previous algorithm
needs as many cycles as the number of bits in the input
signal, which is also the number of taps, in the
decoder. This is a big impact on the performance of
the system, depending on the size of the code. For
example, for a code word of 73 bits, the decoding
would take 73 cycles, which would be excessive for
most applications.

B. Plain MLD With Syndrome Fault Detector (SFD)
 In order to improve the decoder performance,
alternative designs may be used. One possibility is to
add a fault detector by calculating the syndrome, so
that only faulty code words are decoded [11]. Since
most of the code words will be error-free, no further
correction will be needed, and therefore performance
will not be affected. Although the implementation of
an SFD reduces the average latency of the decoding
process, it also adds complexity to the design (see Fig.
4).The SFD is an XOR matrix that calculates the
syndrome based on the parity check matrix. Each
parity bit results in a syndrome equation. Therefore,
the complexity of the syndrome calculator increases
with the size of the code. A faulty code word is
detected when at least one of the syndrome bits is “1.”
This triggers the MLD to start the decoding, as
explained before. On the other hand, if the codeword
is error-free, it is forwarded directly to the output, thus
saving the correction cycles In this way, the
performance is improved in exchange of an additional
module in the memory system: a matrix of XOR gates
to resolve the parity check matrix, where each check
bit results into a syndrome equation. This finally
results in a quite complex module, with a large amount
of additional hardware and power consumption in the
system.
3.PROPOSED ML DETECTOR/DECODER

 This section presents a modified version of
the ML decoder that improves the designs presented
before. Starting from the original design of the ML
decoder introduced in [8], the proposed ML
detector/decoder (MLDD) has been implemented
using the difference-set cyclic codes (DSCCs) [16]–
[19]. This code is part of the LDPC codes, and, based
on their attributes, they have the following properties
ability to correct large number of errors

Fig. 2.Schematic of an ML decoder.I) cyclic shift
register. II) XOR matrix. III) Majority gate. IV)

XOR for correction.

Fig. 3.Flowchart of the ML algorithm.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 10

• sparse encoding, decoding and checking circuits
synthesizable into simple hardware;
• modular encoder and decoder blocks that allow an
efficient hardware implementation;
• systematic code structure for clean partition of
information and code bits in the memory.

Fig. 4.Single check equation of a � _ __ ML
decoder. (a) One bit-flip. (b) Two bit-flips. (c)

Three bit-flips.

An important thing about the DSCC is that its
systematical distribution allows the ML decoder to
perform error detection in
a simple way, using parity check sums (see [6] for
more details).However, when multiple errors
accumulate in a single word, this mechanism may
misbehave, as explained in the following. In the
simplest error situation, when there is a bit-flip in a
code word, the corresponding parity check sum will be
“1,” as shown in Fig. 5(a). This figure shows a bit-flip
affecting bit 42 of a codeword with length and the
related check sum that produces a “1.” However, in
the case of Fig. 5(b), the code word is affected by two
bit-flips in bit 42 and bit 25, which participate in the
same parity check equation. So, the check sum is zero
as the parity does not change. Finally, in Fig. 5(c),
there are three bit-flips which again are detected by the
check sum (with a “1”).As a conclusion of these
examples, any number of odd bit flip scan be directly
detected, producing a “1” in the corresponding .The
problem is in those cases with an even numbers of bit-
flips, where the parity check equation would not detect
the error. In this situation, the use of a simple error
detector based on parity check sums does not seem
feasible, since it cannot handle “false negatives”
(wrong data that is not detected). However, the

alternative would be to derive all data to the decoding
process(i.e., to decode every single word that is read in
order to check its correctness), as explained in
previous sections, with a large performance overhead
.Since performance is important for most applications,
we have chosen an intermediate solution, which
provides a good reliability with a small delay penalty
for scenarios where up to five bit-flips may be
expected (the impact of situations with more than five
bit-flips will be analyzed in Section IV-A). This
proposal is one of the main contributions of this paper,
and it is based on the following hypothesis: Given a
word read from a memory protected with DSCC
codes, and affected by up to five bit-flips, all errors
can be detected in only three decoding cycles. This is a
huge improvement over the simpler case, where
decoding cycles are needed to guarantee that errors are
detected. The proof of this hypothesis is very complex
from the mathematical point of view. Therefore, two
alternatives have been used in order to prove it, which
are given here.
• Through simulation, in which exhaustive
experiments have been conducted, to effectively verify
that the hypothesis applies (see Section IV).
• Through a simplified mathematical proof for the
particular case of two bit-flips affecting a single word
For simplicity, and since it is convenient to first
describe the chosen design, let us assume that the
hypothesis is true and that only three cycles are needed
to detect all errors affecting up to five bits (this will be
confirmed in Section IV).In general, the decoding
algorithm is still the same as the one in the plain ML
decoder version. The difference is that, instead of
decoding all codeword bits by processing the ML
decoding during cycles, the proposed method stops
intermediately in the third cycle, as illustrated in Fig.
6. If in the first three cycles of the decoding process,
the evaluation of the XOR matrix for all is “0,” the
code word is determined to be error-free and
forwarded directly to the output. If the contain in any
of the three cycles at least a “1,” the proposed method
would continue the whole decoding process in order to
eliminate the errors. A detailed schematic of the
proposed design is shown in Fig. 7. The figure shows
the basic ML decoder with an -tap shift register, an
XOR array to calculate the orthogonal parity check
sums and a majority gate for deciding if the current bit
under decoding needs to be inverted. Those
components are the same as the ones for the plain ML
decoder shown in Fig. 2. The additional hardware to
perform the error detection is illustrated in Fig. 7 as i)
the control unit which triggers a finish flag when no
errors are detected after the third cycle and ii) the
output.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 11

Fig. 5.Flow diagram of the MLDD algorithm.

 Tristate buffers. The output tri state buffers
are always in high impedance unless the control unit
sends the finish signal so that the current values of the
shift register are forwarded to the output. The control
schematic is illustrated in Fig. 8. The control unit
manages the detection process. It uses a counter that
counts up to three, which distinguishes the first three
iterations of the ML decoding. In these first three
iterations, the control unit evaluates the by combining
them with the OR1 function. This value is fed into a
three-stage shift register, which holds the results of the
last three cycles. In the third cycle, the OR2 gate
evaluates the content of the detection register. When
the result is “0,” the FSM sends out the finish signal
indicating that the processed word is error free. In the
other case, if the result is “1,” the ML decoding
process runs until the end.
This clearly provides a performance improvement
respect to the traditional method. Most of the words
would only take three cycles (five, if we consider the
other two for input/output) and only those with errors
(which should be a minority) would need to perform
the whole decoding process. More information about
performance details will be provided in the next
sections. The schematic for this memory system is
very similar to the one in Fig. 1, adding the control
logic in the MLDD module.

Fig. 6.Schematic of the proposed MLDD.i) Control

unit. ii) Output tristate buffers.

 WORD ENCODER

 MEMORY
MLDD WORD

Fig. 8.Memory system schematic of an MLDD.

4.CORRECTOR
 One-step majority logic correction is the
procedure that identifies the correct value of an each
bit in the codeword directly from the received
codeword the majority value indicates the correctness
of the code-bit under consideration; if the majority
value is 1, the bit is inverted, otherwise it is kept
unchanged.

7

7

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 12

Fig 8 Majority Logic Corrector for 15-Bit Codeword’s
A compact implementation for the majority gate is by
using Sorting Networks. The binary Sorting Networks
is used to do the sort operation of the second step
efficiently. An -input sorting network is the structure
that sorts a set of bits, using 2-bit sorter building
blocks. Fig. 6.5 (a) Shows a 4-input sorting network.
Each of the vertical lines represents one comparator
which compares two bits and assigns the larger one to
the top output and the smaller one to the bottom see
Fig. 6.5 (b) the four-input sorting network, has five
comparator blocks, where each block consists of two
two-input gates; overall the four-input sorting network
consists of ten two-input gates in total.

5.SORTING NETWORK
 Sorting network is used to sort the two or
more inputs. By using the sorting network accessing
time is reduced by sorting the inputs. From the below
diagram each vertical line indicates a comparator,
which compares the two bits and assigns the larger one
to the top output and smaller one to the bottom. From
that we conclude that without using the sorting
network the XOR matrix output is directly applied to
the majority gate so the accessing time is large to
obtain the output. In our proposed we use sorting

network in the modified control unit it separate the
maximum level output and minimum level output So
the accessing time is reduced.

Fig 10 (a) Four-Input Sorting Network Each (b) One
Comparator Structure
(c) Eight-Input Majority Gate Using Sorting Network

6.RESULTS

A. Memory

 The memory read access delay of the plain
MLD is directly dependent on the code size. i.e., a
code with length 72 needs 72 cycles. Then two extra
cycles need to be added for I/O. On the other hand, the
memory read access delay of the proposed Modified
MLDD is only dependent on the word error

 c3

c
 c3

c

Maj
ority

 c3

c
 c3

c

c
0

c
1

c
4

c
2

c
3

c
9

c
8

c
5

c
7

c
6

c
1

c
1

c
1

c
1

c
1

n-bit Coded Vector

a

Max
(a,b)

Min
(a,b)

a

b

b

Majori
ty
Signal

c

c

M
ax

 (
a,

 b
, c

, d
)

T
o

 a

b

d

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 13

rate(WER).there are more errors, then more words
need to be fully decoded.

Fig 10 Error Detection by Plain MLD Method

B. Area
 In the proposed MLDD there is an extra
circuitry of control logic which consists of shift
register and or gates. The given below table shows the
comparison of total estimated power consumption.

Technique

Total Equivalent gate
count requirement

Existent MLD 3197
MLDD 3322
Modified MLDD 2229

 Therefore there will be a slight area overhead
when compared to existing MLD because of this
detection logic. But this is overcome by modified
MLDD using sorting network.

7.CONCLUSION
 In this paper, the detection of errors during
first iterations of serial one step Majority Logic
Decoding of DSCCs-LDPC codes has been presented.
The simulation results show that the one step MLD
would takes 15 cycles to decode a code word of 15-
bits, which would be excessive for most applications.
The MLD design requires small area but requires large
decoding time and can be able to detect two or few
errors.Hence,memory access time increases another
method, called MLDD can detect upto five bit-flips
and consumes the area of majority gate.

The proposed modified MLDD have the capability to
detect the presence of errors in just 3 cycles even for
multiple bit flips.It has found that for error detection
and correction (for code word of 15), when comparing
to the existing technique, a speed up of about 1100 ns

is obtained when there is no errors in the data read
access. This is a great saving of time since most of the
situations the memory read access does not make
errors. Therefore there is a considerable reduction in
the memory access time.The proposed MLDD have
the capability of detecting more than five bit flips and
also reduces the area of majority gate by the use of
sorting network.

REFERENCES

[1] Efficient Majority Logic Fault Detection With

Difference-Set Codes for Memory
Applications Shih-Fu Liu, Pedro Reviriego,
Member, IEEE, and Juan Antonio Maestro,
Member, IEEE Transactions On Very Large
Scale Integration (VLSI) Systems, vol. 20, no.
1, January 2012

[2] P. Ankolekar, S. Rosner, R. Isaac, and J.

Bredow, “Multi-bit error correction methods
for latency-contrained flash memory systems,”
IEEE Trans. Device Mater. Reliabil., vol. 10,
no. 1, pp. 33–39, Mar. 2010.

[3] H. Naeimi and A. DeHon, “Fault secure

encoder and decoder for NanoMemory
applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–
486, Apr. 2009.

[4] S. Ghosh and P. D. Lincoln, “Low-density

parity check codes for error correction in
nanoscale memory,” SRI Comput. Sci. Lab.
Tech. Rep.CSL-0703, 2007.

[5] G. C. Cardarilli et al. Concurrent error

detection in reed-solomon encoders and
decoders. IEEE Trans. VLSI, 15:842–826,
2007.

[6] R. Horan et al. Idempotents, mattson-solomon

polynomials and binary ldpc codes. IEE
Proceedings of Communication, 153(2):256–
262, 2006.

[7] C. Tjhai, M. Tomlinson, M. Ambroze, and M.

Ahmed,“Cyclotomic idempotent-based binary
cyclic codes,” Electron. Lett., vol. 41, no. 6,
Mar. 2005.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

goniv Publications Page 14

[8] C. W. Slayman, “Cache and memory error
detection, correction, and reduction techniques
for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Reliabil., vol. 5, no. 3,
pp. 397–404, Sep. 2005.

[9] R. C. Baumann, “Radiation-induced soft errors
in advanced semiconductor technologies,”
IEEE Trans. Device Mater. Reliabil., vol. 5,
no.3, pp. 301–316, Sep. 2005.

[10] Heng Tang et al. Codes on finite geometries.

IEEE Transaction on Information Theory,
51(2):572–596, 2005.

[11] Shu Lin and Daniel J. Costello. Error Control

Coding. Prentice Hall, second edition, 2004.

[12] S. Lin and D. J. Costello, Error Control

Coding, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 2004.

[13] J. Kim et al. Error rate in current-controled

logic processors with shot noise. Fluctuation
and Noise Letters, 4(1):83–86, 2004.

[14] S. Hareland et al. Impact of CMOS process

scaling and SOI on the soft error rates of logic
processes. In Procedings of Symposium on
VLSI Digest of Technology Papers, pages 73–
74, 2001.

